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Abstract. The earlier introduced method of calculation of quark distributions in hadrons, based on QCD
sum rules, is improved. The imaginary part of the virtual photon forward scattering amplitude on some
hadronic current is considered in the case, when initial and final virtualities of the current p2

1, and p2
2 are

different, p2
1 6= p2

2. The operator product expansion (OPE) in p2
1, p2

2 is performed. The sum rule for quark
distribution is obtained using double dispersion representation of the amplitude on one side in terms of
calculated in QCD OPE and on the other side in terms of physical states contributions. Double Borel
transformation in p2

1, p2
2 is applied to the sum rule, killing background non-diagonal transition terms which

deteriorated the accuracy in previous calculations. The case of the valence quark distribution in the pion
is considered, which was impossible to treat by the previous method. OPE up to dimension 6 operators is
performed and leading order perturbative corrections are accounted. Valence u-quark distribution in π+

was found at intermediate x, 0.15 < x < 0.7, and normalization point Q2 = 2 GeV2. These results may be
used as input for evolution equations.

1 Introduction

The QCD sum rule approach, invented by Shifman, Vain-
stein and Zakharov in 1979 [1] is now well known as a pow-
erful method, which makes it possible to calculate in QCD
in a model independent way and with a good accuracy var-
ious hadron characteristics like masses, decay widths, form
factors etc. The method is based on the operator product
expansion (OPE), extended to the non-perturbative re-
gion. These results were obtained from consideration of
2- and 3-point correlators (for a review, see [2]). A bit
later the structure functions, quark distributions in pho-
ton and hadrons were investigated in the QCD sum rule
framework. The second moment of the photon structure
function was considered in [3], and that of the pion and nu-
cleon in [4,5], but unfortunately it was difficult to extend
this approach for calculating higher moments. The general
method for calculating hadron structure functions in the
region of intermediate x was suggested in [6] and devel-
oped in [7]. The method is based on the consideration of
a 4-point correlator, corresponding to forward scattering
of two currents, one of which has the quantum numbers
of the hadron of interest, and the other is electromagnetic
(or weak). In the first order of OPE, in the case when the
hadron is a meson, this corresponds to box diagrams like
shown in Fig. 1 at p1 = p2 = p, q1 = q2 = q, where p is the
momentum of the hadron current and q is the momentum
of the photon. The problem of such diagrams is that even
if p2, q2 are large and negative, in the case of forward scat-
tering the singularity in the t-channel for massless quarks
is at t = 0, i.e. large distances in the t-channel are of im-

Fig. 1. Diagrams corresponding to the unit operator contribu-
tion. Dashed lines with arrows correspond to the photon, thick
solid ones to the hadron current

portance. However, as was shown in [6,7], the situation
changes drastically when the imaginary part of the scat-
tering amplitude – the object of interest in the case of
structure functions – is considered. The imaginary part
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Fig. 2. Diagram of the forward photon–pion scattering

in the s-channel (s = (q + p)2) of the forward scattering
amplitude is dominated by small distance contributions
at large (negative) p2 and intermediate x. (Here the stan-
dard notation is used: x is the Bjorken scaling variable,
x = −q2/2ν, ν = pq). The proof of this statement, given
in [7], is based on the fact that for the imaginary part
of the forward amplitude the position closest to zero, the
singularity in the momentum transfer, is determined by
the boundary of the Mandelstam spectral function, and is
given by the equation

t = −4
x

1 − x
p2. (1)

It is assumed, that | q2 |�| p2 |. Therefore, for the case
that the imaginary part of the forward scattering ampli-
tude is not at small x and large p2 the virtualities of inter-
mediate states in the t-channel are large enough for OPE
to be applicable. The further procedure is common with
those for the QCD sum rules (with some special nuances
we will discuss later), i.e. the dispersion representation on
p2 is saturated by physical states and the contribution of
the lowest particle state is extracted using a Borel trans-
formation. In [7] the structure function of the nucleon was
calculated. Somewhat later, the structure function of the
photon was also calculated [8]. But one should note that
the sum rule for the d-quark distribution in the proton ob-
tained in [7] is applicable within the rather narrow range
of (0.2 < x < 0.45) and the agreement with experiment is
not good enough. Moreover, it was found to be impossible
to calculate the structure functions of the π- and ρ-mesons
in this way (that is why the authors of [8] were forced to
use a special trick, based on VDM, to calculate the ρ-
meson structure function). The reason for this is that the
sum rules, in the form used in [7], have a serious drawback.

To understand what kind of problem occurs, let us
briefly review the main points of the method. Consider a
4-point correlator with two electromagnetic currents and
two currents with quantum numbers of some hadron (for
clarity the axial current, corresponding to charged pions,
will be considered but the conclusion is independent of the
choice of the current). We have

Πµνλρ(p1, p2; q1, q2) = −
∫

eip1x+iq1y−ip2zd4xd4yd4z

×〈0 | T {
j5λ(x)jemµ (y)jemν (0)j5ρ(z)

} | 0〉
and

j5λ = ūγ5γλd. (2)

By considering the forward scattering amplitude in ac-
cord with [7], put p1 = p2 at the very beginning. Among

the various tensor structures of Πµνλρ it is convenient to
consider the structure (pµpνpλpρ/ν) ·Π̃(p2, q2, x), and the
imaginary part ImΠ(p2, q2, x) in the s-channel related to
the pion structure function F2π(x)1. Let us write the dis-
persion relation representation of ImΠ̃(p2, q2, x) in the p2

variable. As was shown in [7] (see also [9,10]) the correct
form of the dispersion representation is the double disper-
sion relation

ImΠ̃ = a(x) +

∞∫
0

ϕ(x, u)du
(u− p2)

+

∞∫
0

∞∫
0

dudu′ρ(u, u′, x)
(u− p2)(u′ − p2)

. (3)

(We restrict ourselves to lowest twist contributions, the
terms of order p2/q2 are neglected.) In order to derive (3)
it is convenient to consider first the case, when p2

1 6= p2
2

and go to the limit p2
1 → p2

2 = p2. Then the form (3) is
evident. The last term in the right hand side (r.h.s.) of
(3) represents the propert double dispersion contribution,
the second may be considered as the subtraction term in
the variables p2

1 or p2
2 and the first term is the subtraction

term from the second. The interesting contribution for us
arises from the pion poles in the two variables u and u′ in
the last term in (3). This term corresponds to the diagram
of Fig. 2, where the axial current creates the pion; then the
process of deep inelastic scattering of the virtual photon
off the pion proceeds and finally the pion is absorbed by
the axial current. Evidently this term is proportional to
the pion structure function. All other terms in (3) may
be considered as background. Let us accept a model for
the hadronic spectrum in which ρ, ϕ can be represented
by the contribution of the resonance ( π-meson) and the
continuum (s0 is the continuum threshold)

ρ(u, u′, x) = f(x)δ(u−m2
π)δ(u′ −m2

π)
+ ρ0(x)θ(u− s0)θ(u′ − s0),

ϕ(x, u) = ϕ1(x)δ(u−m2
π) + ϕ2(x)θ(u− s0), (4)

where f(x) is proportional to the resonance (π-meson)
structure function of interest,

f(x) ∼ 2πF2(x), (5)

and ϕ1,2 are some unknown functions, corresponding to
non-diagonal transitions.

The substitution of (4) into (3) gives

ImΠ̃ =
f(x)

(p2 −m2
π)2

+ a(x)

+

∞∫
s0

∞∫
s0

ρ0(x, u, u′)dudu′

(u− p2)(u′ − p2)
+

∞∫
s0

ϕ2(x, u)
(u− p2)

du

+
ϕ1(x,m2

π)
(p2 −m2

π)
. (6)

1 As was mentioned in [7], the results are more reliable if the
invariant amplitude at the kinematical structure with maximal
dimension is used.
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Fig. 3. Example of the non-diagonal transition

The last term in (6) corresponds to Fig. 3, where the ax-
ial current creates a pion, deep inelastic scattering pro-
ceeds, but the final state is not a pion like in Fig. 2, but
some excited state with pion quantum numbers, which is
absorbed by the axial current. In order to separate the
term proportional to the pion structure function – the
first term in the r.h.s. of (6) – the Borel transformation in
p2 is applied to (6), which suppresses continuum contri-
butions to (6). (The Borel parameter M2 is chosen such
that e−s0/M2 � 1.) After Borel transformation we get

BM2ImΠ̃(p2, x) = f(x)
1
M2 e−m2

π/M2

− ϕ1(x)e−m2
π/M2

+ . . . (7)

Dots denote the terms which are suppressed exponentially
after Borel transformation (the second and third terms
in (6)). For these terms we can assume that they are
given by the contribution of the bare loop in the same
region, see Fig. 1. Because of the Borel suppression ∼
exp(−s0/M2) � 1 terms are small and such an approxi-
mation does not introduce an essential error in the final
result. However, the second term in the r.h.s. of (7) is
not exponentially suppressed in comparison with the first.
The only way to kill it is to differentiate both sides of (7)
(multiplied by exp(m2

π/M
2)) over 1/M2. Just this proce-

dure was used in [6,7] to determine the nucleon structure
functions. But, as is well known, the differentiation of an
approximate relation may seriously deteriorate the accu-
racy of the results. In QCD sum rules such a procedure
increases the contribution of non-perturbative corrections
and continuum contributions, and the sum rules become
much worse or even fail (as for the ρ-meson). For the π-
meson the situation is even worse, because direct calcula-
tions show that a bare loop contribution corresponds only
to non-diagonal transitions.

In this work we suggest a modified method of cal-
culation of the hadron structure function, which is free
from these problems and is completely based on QCD sum
rules. We will illustrate it by the example of the π-meson
structure function calculation, which usually is the most
“dangerous” case.

2 The idea of the method

The idea of the method is to consider at the begining
non-equal quantities p2

1 6= p2
2 in (2) and perform all calcu-

Fig. 4. Integration region in the double dispersion representa-
tion

lations for this case. Instead (3) the dispersion represen-
tation takes the form

ImΠ̃(p2
1, p

2
2, x) = a(x) +

∞∫
0

ϕ(x, u)
u− p2

1
du

+

∞∫
0

ϕ(x, u)
u− p2

2

+

∞∫
0

du1

∞∫
0

du2
ρ(x, u1, u2)

(u1 − p2
1)(u2 − p2

2)
. (8)

Apply to (8) a double Borel transformation in p2
1, p

2
2, which

kills the first three terms in the r.h.s. of (7). We then have

BM2
1
BM2

2
ImΠ̃(p2

1, p
2
2, x)

=

∞∫
0

du1

∞∫
0

du1ρ(x, u1, u2) exp
[
− u1

M2
1

− u2

M2
2

]
. (9)

One can divide the integration region over u1,2 into four
areas (Fig. 4):

(I) u1 < s0;u2 < so;
(II) u1 < s0; u2 > s0;
(III) u2 < s0; u1 > s0;
(IV) u1,2 > s0.

Using the standard QCD sum rule model of the hadronic
spectrum and the hypothesis of quark–hadron duality, i.e.
the model with one lower resonance plus continuum, one
can easily notice2 that area (I) corresponds to the reso-
nance region. The spectral density can be written in this
area as

2 We restrict ourselves to the simplest model, because a
higher resonance contribution in any case will be suppressed
after double borelization.
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ρ(u1, u2, x) = f2
π · 2πF2(x)δ(u1 −m2

π)δ(u2 −m2
π), (10)

where fπ is defined as

〈0 | jλ5 | π〉 = fπpλ fπ = 131 MeV.

In the area (IV), where both variables u1,2 are far from
the resonance region, the non-perturbative effects may be
neglected, and, as usual in sum rules, the spectral function
of the hadron state is described by the bare loop spectral
function ρ0 in the same region,

ρ(u1, u2, x) = ρ0(u1, u2, x). (11)

In the areas (II) and (III) one of the variables is far from
the resonance region, but the other is in the resonance
region, and the spectral function in this region is some
unknown function ρ = ψ(u1, u2, x), which corresponds to
transitions like the π → continuum, as shown in Fig. 3.
After double Borel transformation the total answer for the
physical part can be written as (M2

1 ,M
2
2 are the Borel

masses squared)

B̂1B̂2[ImΠ] = 2πF2(x) · f2
πe−m2

π(1/M2
1+1/M2

2 )

+

s0∫
0

du1

∞∫
s0

du2ψ(u1, u2, x)e−(u1/M2
1+u2/M2

2 )

+

∞∫
s0

du1

s0∫
0

du2ψ(u1, u2, x)e−(u1/M2
1+u2/M2

2 )

+

∞∫
s0

∞∫
s0

du1du2ρ
0(u1, u2, x)e−(u1/M2

1+u2/M2
2 ). (12)

In what follows we put for simplicity M2
1 = M2

2 ≡ 2M2.
One of the advantages of this method is that after dou-
ble Borel transformation the unknown contribution of the
areas (II) and (III) (the second and third terms in (12))
are exponentially suppressed. Using duality arguments we
estimate the contribution of the whole non-resonance re-
gion (i.e. areas II, III and IV) to be the contribution of
the bare loop in the same region and demand the value
to be small (less than 30%). So, equating a physical and
a QCD representation of Π̃, and taking in account the
cancellation of the appropriate parts in the left and right
sides one can write the following sum rules (we omit all
term, which are suppressed after Borel transformation):

ImΠ0
QCD + Power correction = 2πF2(x)f2

π ,

ImΠ0
QCD =

s0∫
0

s0∫
0

ρ0(u1, u2, x)e−(u1+u2)/(2M2). (13)

(The pion mass is neglected.) It can be shown (see Ap-
pendix) that for box diagram ψ(u1, u2, x) ∼ δ(u1 − u2),
and as a consequence the second and third terms in (12)
are zero in our model of the hadronic spectrum.

3 Calculation of box diagram

The diagrams, corresponding to the unit operator con-
tribution, are shown in Fig. 1a,b. Note that the crossing
diagram, shown in Fig. 1c, does not contribute, their con-
tribution being found to be 0 in leading twist. (This is a
consequence of the kinematics, so such crossing diagrams
also are zero for higher dimension corrections in the lead-
ing twist.)

It is enough for us to calculate the distribution of va-
lence u-quarks in the pion, since d̄(x) = u(x). For this
reason we restrict ourselves to the calculation of ImΠ̃ for
the diagram Fig. 1a.

Consider first the case p1 = p2 and let us demonstrate,
as was announced in Sect. 2, that in this case the box
diagram contributs only to non-diagonal transitions, like
in Fig. 3 and refers to background terms in (7). Diagram
Fig. 1a has a contribution equal to

ImΠµνλσ = − 3
(2π)2

× 1
2

∫
d4k

k4 δ[(k + q)2]δ[(p− k)2]

× Tr[γλk̂γµ(k̂ + q̂)γν k̂γσ(k̂ − p̂)]. (14)

Calculate the trace and omit the terms, which cannot con-
tribute to the structure ∼ pµpνpλpσ/ν of interest to us.
We get

ImΠµνλσ = −12
π2

∫
d4k

k4 kµkνkλ(kσ − pσ)

× δ[(k + q)2]δ[(p− k)2]. (15)

Calculation of the integral leads to

ImΠµνλσ = − 3
π
pµpνpλpσ

1
νp2x

2(1 − x) (16)

(only the terms ∼ pµpνpλpσ are kept) and

ImΠ̃(p2, x) = − 3
π

1
p2x

2(1 − x). (17)

Substitute (17) into (6) and perform a Borel transforma-
tion. We get

3
π
x2(1 − x)(1 − e−s0/M2

) = 2πf2
πxuπ(x)

1
M2

+ ϕ1(x), (18)

where uπ(x) is the distribution of the valence u-quarks
in the pion (the pion mass is neglected). Observing the
M2 dependence in (18) it becomes evident, that in this
approach the attempt to separate the pion contribution
from the background by studying theM2 dependence (e.g.
differentiation over 1/M2) is useless – up to a small correc-
tion ∼ e−s0/M2

the box diagram contributes to the back-
ground only.

Consider now the more promising approach p2
1 6= p2

2.
Since non-equality of p2

1, p
2
2 is important for us only for
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the Borel transformation, i.e. in the denominators of the
dispersion representation (8), in the calculation of the nu-
merator, resulting in the kinematical structure pµpνpλpα

we can put p1 = p2 = p. Therefore, in order to under-
stand the essential features of the corresponding integrals
in case of non-equal p2

1, p
2
2, it is sufficient to study instead

of (14) a more simple integral,

ImT (p2
1, p

2
2, q

2, ν) =
∫

d4k
1
k2

1
(k + p2 − p1)2

×δ[(k + q)2]δ[(p1 − k)2]. (19)

The direct calculation of the integral in the r.h.s. of (19)
(see Appendix) shows that it may be represented in the
form

ImT (p2
1, p

2
2, q

2, ν) =
π

4νx

2ν/x∫
0

1
u− p2

1

1
u− p2

2
du. (20)

(Higher order terms in p2
1/q

2, p2
2/q

2 are neglected.) At
p2
1 = p2 it gives

ImT (p2, q2, ν) =
π

4νxp2 , (21)

as it should. Equation (20) may be rewritten in the form
of the double dispersion representation (8) with a(x) =
ϕ(x) = 0 and ρ(u, u′, x) proportional to δ(u− u′)

νImT (p2
1, p

2
2, x) = − π

4x

∞∫
0

δ(u− u′)
(u− p2

1)(u′ − p2
2)

dudu′. (22)

(Higher twist terms are omitted.) From this consideration
it becomes clear that in order to go from the case of p2

1 =
p2
2 = p2 in the calculation of the box diagram Fig. 1a (14)

to p2
1 6= p2

2, it is enough to substitute in the final result
the factor 1/p2 by3

1
p2 → −

∞∫
0

du

∞∫
0

du′ δ(u− u′)
(u− p2

1)(u′ − p2
2)
. (23)

Therefore, instead of (17) we get

Π̃(p2
1, p

2
2, x) =

3
π
x2(1 − x)

×
∞∫
0

du

∞∫
0

du′ δ(u− u′)
(u− p2

1)(u′ − p2
2)
. (24)

Perform the double Borel transformation in p2
1, p

2
2. It kills

non-desirable (depending on one variable) subtraction
terms in (8) and we have the sum rule for the valence
u-quark distribution in the pion,

uπ(x) =
3

2π2

M2

f2
π

x(1 − x)(1 − e−s0/M2
), (25)

3 It must be mentioned that such a substitution is valid only
for the box diagram; it does not take place for more compli-
cated diagrams considered in the next section.

where we put M2
1 = M2

2 = 2M2. (As is known [11] the
charactiristic values of the Borel parameters M2

1 ,M
2
2 in

the double Borel transformation are about twice the Borel
parameters in the ordinary Borel transformation used in
mass calculations.)

Before going to a more accurate consideration taking
account of higher dimension operators and leading order
(LO) perturbative corrections, let us discuss in more detail
the unit operator contribution in order to estimate if it is
reasonable. The calculation of the pion decay constant fπ,
performed in [1], in the same approximation results in

f2
π =

1
4π2M

2(1 − e−s0/M2
). (26)

Substitution of (26) into (25) gives

uπ(x) = 6x(1 − x). (27)

One may note that
1∫

0

uπ(x)dx = 1, (28)

in agreement with the fact, that in the quark-parton model
there is one valence quark in the pion. Also, it can easily
be verified that

1∫
0

xuπ(x)dx = 1/2, (29)

which corresponds to the naive quark model, where no sea
quarks exist. So one can say that formally the unit oper-
ator contribution corresponds to the naive parton model.

Of course, (28) only formally makes sense because, as
was discussed in the Introduction, our approach is correct
only in some intermediate region of x. The boundaries
of x, where this approach is correct, will be found if one
takes into account non-perturbative power corrections. In
the next section we will discuss them. At the end of this
section let us discuss perturbative corrections. We take
into account only LO terms, proportional to ln(Q2/M2),
and choose Q2 = Q2

0 ' 2 GeV2 for the point where we cal-
culate our sum rules. Finally, the result for a bare loop has
the form (the second term in square brackets corresponds
to the perturbative correction taken into account)

uπ(x) =
3M2x

2π2f2
π

(1 − x)

×
[
1 +

αs(µ2) ln(Q2/µ2)
3π

×
(

1/x+ 4 ln(1 − x) − 2(1 − 2x) lnx
1 − x

)]

× (1 − e−s0/M2
). (30)

In the calculation we choose the normalization pointM2 =
µ2. The fact that we take into account the αs correction
at the point Q2 = 2 GeV2 means that our final result for
the structure function (we write it in the next section) can
be used as an input for the evolution, starting from this
value of Q2

0.
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Fig. 5. Diagrams corresponding to the d = 4 operator con-
tribution. Dashed lines with arrows correspond to the photon,
thick solid ones to the hadron current, wave lines correspond
to the external gluon field

4 Calculations of higher order terms in OPE

In this section we discuss the power correction contribu-
tion to the sum rules. The power correction with lower di-
mension is proportional to the gluon condensate 〈Gq

µνG
q
µν〉

with d = 4. As was discussed above, only s-channel dia-
grams (Fig. 1a) exist in the case of double borelization.
The 〈Gq

µνG
q
µν〉 correction was calculated in a standard

way in the Fock–Schwinger gauge xµAµ = 0 [12].
The quark propagator iS(x, y) = 〈ψ(x)ψ̄(y)〉 in the

external field Aµ has the well-known form [13] (our sign
of g is opposite to that of [13])

iS(x, y) = iS0(x− y)

− g

∫
d4ziS0(x− z) · iÂ(z)iS0(z − y)

+ g2
∫ ∫

d4zd4z′iS0(x− z)iÂ(z)

× iS0(z − z′) · iÂ(z′) · iS0(z′ − z) + . . . (31)

Here S0 is a free quark propagator; Â = (1/2)λaγµA
a
µ and

Aa
µ(x) =

(
1
2

)
xρG

a
ρµ +

(
1
3

)
xαxρ[DαG

a
ρµ(0)]

+
(

1
8

)
xαxρxβ [DαDβG

a
ρµ]. (32)

When calculating one should take into account the quark
propagator expansion up to the third term and only the
first term in the expansion of the external field Aµ (Fig. 5).

These diagrams have been calculated using a program
for analytical calculations, REDUCE. Surprisingly, in the
case of the double borelization the sum of all diagrams in
Fig. 5 was found to be 0. So the gluon condensate contri-
bution to the sum rule is absent.

Before we discuss the d = 6 contribution, let us make
the following remark. Due to the fact that we are inter-
ested only in the intermediate values of x, we should take
into account only loop diagrams. Really one can easily
see that the diagrams with no loops (like those in Fig. 6)
are proportional to δ(1 − x) which is out of the region of
applicability of the method.

Fig. 6. Examples of the non-loop diagrams of dimension 4.
Wave lines corespond to gluons, a dot means a derivative, other
notations as in Fig. 1

Fig. 7. Diagrams of dimension 6, see text. All notations are
as in Fig. 6

There is a large number of loop diagrams correspond-
ing to d = 6 corrections. First of all, there are diagrams
which correspond to interaction with only the gluon vac-
uum field, i.e. only with external soft gluon lines (see
Fig. 7). Such diagrams may appear, if we take

(1) all possible combinations which appear when the ex-
pansion of the quark propagator (31) is taken into ac-
count up to the fourth term and in the expansion of
the external gluon field (32) only the first term is kept.
For example, it is the fourth term of the expansion for
one quark propagator and the first term (free propa-
gator) for the other three (Fig. 6a), or the second term
of the expansion for the three quark propagator and
one propagator is free (Fig. 6b) etc.;

(2) all possible combinations, when the second and the
third terms of the expansion of gluon field (32) are
taken into account, like those shown in Fig. 7c. An
external gluon line with dot corresponds to derivatives
of the gluon lines.

The diagrams of Fig. 7a,b are, obviously, proportional
to 〈g3fabcGa

µνG
b
αβG

c
ρσ〉 and when calculating it is conve-

nient to use the representation of this tensor structure
suggested in [14]

〈0 | g3fabcGa
µνG

b
αβG

c
ρσ | 0〉 (33)

= 1/24〈0 | fabcGa
γδG

b
δεG

c
εγ | 0〉

× (gµσgανgβρ + gµβgαρgσν + gασgµρgνβ + gρνgµαgβσ

− gµβgασgρν − gµσgνβgαρ − gανgµρgβσ − gβρgµαgνσ).

The diagrams of Fig. 7c are proportional to
〈0 | DρG

a
µνDτG

a
αβ | 0〉 and 〈0 | Ga

µνDρDτG
a
αβ | 0〉 . Using

the equation of motion it was found in [14] that
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−〈0 | DρG
a
µνDσG

a
αβ | 0〉 = 〈0 | Ga

µνDρDσG
a
αβ | 0〉

= 2O− [gρσ(gµβgαν − gµαgνβ)

+
1
2
(gµβgασgρν + gανgµρgβσ − gασgµρgνβ − gρνgµαgβσ)]

+ O+(gµσgανgβρ + gµβgαρgσν − gµσgαρgνβ − gρβgµαgνσ),

O± =
1
72

〈0 | g2ja
µj

a
µ | 0〉

± 1
48

〈0 | gfabcGa
µνG

b
νλG

c
λµ | 0〉, (34)

where ja
µ =

∑
i

ψ̄iγµ(λa/2)ψi.

From (34) and (34) one may note that these tensor
structures are proportional to two different vacuum aver-
ages:

〈0 | g2j2µ | 0〉 and 〈0 | g3Ga
µνG

b
νρG

c
ρµf

abc | 0〉.

The first of these, 〈0 | g2j2µ | 0〉, by use of the factorization
hypothesis easily reduces to 〈gψ̄ψ〉2 which is well known,

〈0 | g2j2µ | 0〉 = −(4/3)[〈0 | gψ̄ψ | 0〉]2. (35)

But 〈0 | g3Ga
µνG

b
νρG

c
ρµf

abc | 0〉 is not well known; there
are only some estimates based on the instanton model [15,
16]. Fortunately, in the sum of all diagrams of these two
types, all terms proportional to this dimension 6 gluonic
condensate are exactly cancelled and the sum of the dia-
grams of Fig. 7 is proportional only to 〈gψ̄ψ〉2.

We consider now another type of diagrams which also
give a contribution to the d = 6 power corrections. Such
diagrams appear when one should take into consideration
the expansion of the quark field:

ψ(x) = ψ(0) + xα1 [∇α1ψ(0)]

+
1
2
xα1xα2 [∇α1∇̄α2ψ(0)] + . . . , (36)

where ∇ is the covariant derivative.
In this case there appear diagrams like those in Figs. 8–

10, where a quark (and antiquark) line is expanded, and
the first and the second terms of the expansion (36) are
taken. The expansion of the external gluon field (32) is
also accounted up to the second term. For the diagrams
of Fig. 10 the gluon propagator in the external field is also
accounted (we discuss this below).

All these diagrams can be divided into two types with
quite a different physical meaning. The first type of dia-
grams – like those in Fig. 8 – corresponds to the case where
all interactions with the vacuum proceed out of the loop.
Such diagrams correspond to logarithmic corrections (evo-
lution) to the corresponding non-loop diagrams (without a
hard gluon line). Since, as was discussed in Sect. 3, we will
not take into account these non-loop diagrams, it seems
reasonable that at the same level of accuracy we do not
take into account their evolution. So, all the diagrams of
this type should be omitted. The problem of correctly cal-
culating non-loop diagrams and their leading logarithmic

Fig. 8. Diagrams of dimension 6. External lines with dots
correspond to derivatives in external fields. All notations are
as in Fig. 6

Fig. 9. Dimension 6 diagrams without the loop vacuum inter-
action. All notations are as in Fig. 8

correction is a special problem, which will not be discussed
here. In any case, estimates and physical arguments show
that their contribution would be significant at large x and
negligible in the intermediate region. We will see at the
end of this paper that sum rules themselves indicate the
region of x where effects of the non-loop diagrams and
their evolution may be neglected.

So, according to the previous discussion, we should
bear in mind only those diagrams where the interaction
with the vacuum takes place inside the loop (Figs. 9 and
10). Such diagrams cannot be treated as the evolution of
any non-loop diagrams and are pure power corrections of
dimension 6. All these diagrams are, obviously, propor-
tional to

〈0 | ψ̄d
αψ

b
βDρG

n
µν | 0〉, 〈0 | ψ̄d

α(∇τψ
b
β)Gn

µν | 0〉,
〈0 | (∇τ ψ̄

d
α)ψb

βG
n
µν | 0〉.

These tensor structures were considered in [9] where using
the equation of motion the following results were obtained:

〈0 | ψ̄d
αψ

b
β(DσGµν)n | 0〉 =

g〈0 | ψ̄ψ | 0〉2
33 · 25

× (gσνγ
µ − gσµγν)βα(λn)bd,

〈0 | ψ̄d
α(∇σψβ)bGn

µν | 0〉 =
g〈0 | ψ̄ψ | 0〉2

33 · 26

× [gσµγν − gσνγµ − iεσµνλγ5γλ]βα(λn)bd. (37)
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Fig. 10. Diagrams of dimension 6, corresponding to the quark
propagator expansion (37). All notations are as in Fig. 8

The term 〈0 | (∇σψ̄α)dψ̄b
βG

n
µν | 0〉 can easily be calculated

using the results of [9]:

〈0 | (∇σψ̄α)dψ̄b
βG

n
µν | 0〉 =

g〈0 | ψ̄ψ | 0〉2
33 · 26

× [gσµγν − gσνγµ + iεσµνλγ5γλ]βα(λn)bd.

For diagrams in Fig. 10 we use the following expansion of
the gluon propagator:

Snp
νρ (x− y, y) =

−i
(2π)4

gfnpl

×
∫

d4k

k4 e−iku ·
{[

−ikλyαG
l
αλ − 2

3
i (yαyβkλ

− iyβ

k2 (k2δαλ − 2kαkλ)
)

(DαGβλ)l +
1
3

(
yα +

2ikα

k2

)

× (DλGαλ)l
]
δνρ + 2

[
Gl

νρ + 2i
kα

k2 (DαGνρ)b

]}
. (38)

This expression can be found using the method of the
calculation of the gluon propagator in the external vacuum
gluon field suggested in [12]. The same result up to a ∼
G term is explicitly written in [13] (see also [17]). The
total number of d = 6 diagrams is enormous – about 500.
All of them were calculated using the REDUCE program.
The final result for d = 6 corrections after double Borel
transformation has the form

ImΠd=6 = − 1
(2π)7

· g2 · (ga)2

M4 · 1
36 · 25

× × [(−5784x4 − 1140x3 − 20196x2

+20628x− 8292) ln(2) + 4740x4 + 8847x3

+2066x2 − 2553x+ 1416]
1

x(1 − x)2
. (39)

(ga)2 ≡ 4παs · (2π)4〈0 | ψ̄ψ | 0〉2. Before we write the
final result of the sum rules, let us make one remark. One
can see that in the contribution of the d = 6 operators
(39) the strong coupling constant g2 appears as a factor,
and again it appears in the structures (ga)2. The factor
g2 corresponds to the interaction with the quark propa-
gators (vertices of a hard gluon line in the diagrams in
Figs. 9 and 10, or vertices of external gluon in the dia-
grams in Figs. 6 and 7), and it is reasonable to take it at
the renormalization point µ2 = Q2

0. On the other hand, g2

in the structure (ga)2 appears as a consequence of using
the equation of motion, and its normalization point should
be taken in such a way that the quantity αs〈0 | ψ̄ψ | 0〉2
is a renormalization group invariant. Finally, substituting
the results for the bare loop (30) and the power corrections
(39), we can write the sum rule for the quark distribution
function in the pion:

xuπ(x) =
3

2π2

M2

f2
π

x2(1 − x)

×
[(

1 +
(
αs(M2) · ln(Q2

0/M
2)

3π

)

×
(

1 + 4x ln(1 − x)
x

− 2(1 − 2x) lnx
1 − x

))

·
(
1 − e−s0/M2

)
− 4παs(Q2

0) · 4παs(M2)a2

(2π)4 · 37 · 26 ·M6 · ω(x)
x3(1 − x)3

]
, (40)

where ω(x) is the expression in square brackets in (39).
We choose the effective LO QCD parameter ΛQCD =
200 MeV, Q2

0 = 2 GeV2. The value of the renormalization
invariant parameter is equal to

αsa
2 = αs(M2 = 1 GeV2) · (0.55 GeV3)2 = 0.13 GeV6.

The value of a was taken from the best fit [18] of the
sum rule of the nucleon masses (see [9], Appendix B). The
continuum threshold was varied in the interval 0.8 < s0 <
1.2 GeV2 and it was found that the results only slightly
depend on it. The analysis of the sum rule (40) shows
that the requirements of self-consistency are fulfilled in the
region 0.15 < x < 0.7; the power corrections are less than
30%, and the continuum contribution is small (< 25%).
Stability in the Borel mass parameter M2 dependence in
the region 0.4 GeV2 < M2 < 0.6 GeV2 is good; especially
in the region of x ≤ 0.4 the M2 dependence is almost
constant (see Fig. 11).

The final result for uπ(x) (at M2 = 0.45 GeV2, s0 =
0.8 GeV2) is shown in Fig. 13 (thick solid line). Figure 13
also shows the curve of the u-quark distribution in the
pion, found in [19] by using the evolution equation and
the data on the Drell–Yan process. (This fit does not con-
tradict the earlier calculation of [20]). Bearing in mind
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Fig. 11. Diagrams of dimension 6, corresponding to the quark
and gluon propagator expansion (37) and (38). All notations
are as in Fig. 8

Fig. 12. Borel mass dependence of the quark distribution func-
tion at various x

that NLO αs corrections are not accounted and that one
may expect that they would increase uπ(x) at low x and
decrease at large x, one may consider the agreement as
good. We also show in the same figure the pure bare loop
contribution (line with squares) and the contribution (30)
of the bare loop with non-perturbative correction (crossed
line). One can see that the pure bare loop is not in quite
good agreement with experiment, and both the pertur-
bative correction and the power correction improve the
agreement with experiment. Let us discuss why the sta-
bility became worse when x became larger (see Fig. 11).
From our point of view, this reflects the influence of non-
loop diagrams (and their evolution), which were not ac-
counted as was discussed in Sect. 4. Indeed, the non-loop

Fig. 13. Quark distribution function in pion, denoted “total”.
For comparison a fit from [19], denoted “GRV”, is shown. Also
the bare loop (“bare”) and bare loop with non-perturbative
corrections (denoted “1”) are shown

diagrams which formally are proportional to δ(1 − x), re-
ally would correspond to some function with maximum
close to x = 1 and fast decreasing when x decreased. That
is why effects of such diagrams (and their evolution) are
negligible at x <∼ 0.4–0.5, but may be more or less re-
markable at large x, and the deterioration of the stability
probably reflects this fact. We repeat that the obtained va-
lence u-quark distribution function uπ(x) can be used as
input for the evolution equation (starting from the point
Q2

0 = 2 GeV2).
Let us now finally discuss the estimates for the mo-

ments of the quark distribution which can be found with
the help of the obtained results.

To get the moments, one should make some guesses
about the region of small x <∼ 0.15 and large x >∼ 0.7÷0.8,
where our method is inapplicable. If we make the natural
supposition that at x <∼ 0.15uπ(x) ∼ 1/(x)1/2 according
to Regge behavior, and at large x >∼ 0.7, uπ(x) ∼ (1 −
x)2 according to the quark counting rules, then, matching
these functions with our result (40), one may find that

M0 =

1∫
0

uπ(x)dx ≈ 0.84,
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M1 =

1∫
0

xuπ(x)dx ≈ 0.21

at M2 = 0.4 ÷ 0.45 GeV2. These results only slightly de-
pend on the choice of the points of matching (not more
than 5% when we vary the lower matching point in the re-
gion 0.15÷0.2 and the upper one in the region 0.65÷0.75).
One may note that M0 which has the physical meaning of
the number of quarks in the pion (and should be M0 = 1)
is really close to 1 within our accuracy ∼ 10 ÷ 20% M1
has the physical meaning of the part of the momentum
carried by a valence quark, and the value M1 ≈ 0.21 is
in a good agreement with the well-known fact that two
valence quarks in the pion carry about 40% of the total
momentum.
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Appendix

In this Appendix the double dispersion representation (22)
of the integral of (19) is proved. It is convenient to change
variables in (19) and put p1 − k = k′. Then (19) takes the
form (the prime is omitted)

ImT (p2
1, p

2
2, q

2, ν) =
∫

d4k
1

(p1 − k)2
1

(p2 − k)2

× δ[(p1 + q − k)2]δ(k2). (A.1)

Let us assume that q2 = q′2, t = (p1−p2)2 = 0 and choose
the Lorenz system, where 4-vector P = (p1 + p2)/2 has
only the z-component equal to Pz. From

t = (p1 − p2)2 = p2
1 + p2

2 + 2p1p2 = 0, (A.2)

it follows
P 2 = −P 2

z = (p2
1 + p2

2)/2. (A.3)

Introduce the 4-null-vector r = p1 − p2, r2 = 0,

rP = (p2
1 − p2

2)/2. (A.4)

We have
p1 = P + r/2, p2 = P − r/2. (A.5)

Use the notation

qP = ν = qp1 = qp2. (A.6)

Then

q′p1 = q′p2 = ν + (p2
1 − p2

2)/2, qr = q′r = 0. (A.7)

We can choose the coordinate system where the 4-vector
q has only time and z-components and

qz = −ν/
√

−P 2, (A.8)

q0 =
√
ν2 − q2P 2/

√
−P 2 ≈ ν/

√
−P 2 = −qz.

The last equality corresponds to taking account of lower
twist terms. From (A.4) and (A.7) for the 4-vector r with
components r = {r0, r⊥, rz} it follows that

r0 =
1
2
ν
p2
1 − p2

2√−P 2

1√
ν2 − q2P 2

≈ 1
2
p1 − p2

2√−P 2
,

rz =
1
2
p2
1 − p2

2√−P 2
≈ r0,

r2⊥ = −1
4
q2

(p2
1 − p2

2)
2

ν2 − q2P 2 . (A.9)

The components r0 and rz are equal in the lowest twist
approximation and of order (−P 2)1/2 if p2

1 ∼ p2
2, while

r⊥ ∼ (p2
1 − p2

2)/ν
1/2, i.e. of the next order in this approxi-

mation and it may be neglected. The argument of the first
δ function in (A.1) is equal to

s− 2
1√−P 2

[
ν + P 2 +

1
4
(p2

1 − p2
2)

]
kz (A.10)

−
[
2

√
ν2 − q2P 2

−P 2 +
1
2
p2
1 − p2

2√−P 2

]
k0 + r⊥k⊥cosϕ = 0,

where ϕ is the azimutal angle between p⊥ and k⊥. The last
term in (A.11) may be omitted – it is of the next order in
p2/ν: only (r⊥k⊥)2 may appear because of integration over
ϕ in (A.1). (This fact can be proved by direct calculation.)
From the inequality

k2
0 − k2

z ≥ 0, (A.11)

the inequality follows which defines the integration do-
main over kz in the integral (A.1):

k2
zP

2 −
√

−P 2

[
ν + P 2 +

1
4
(p2

1 − p2
2)

]
kz − 1

4
P 2 ≥ 0.

(A.12)
It is convenient to use the notation

υ = 2
√

−P 2kz. (A.13)

The integration domain is

−2ν ≤ υ ≤ −P 2(1 − x). (A.14)

The denominators in (A.1) are calculated by using the
relations

(p1 − k)2 = p2
1 − 2p1k = p2

1 − 2Pk − rk,

(p2 − k)2 = p2
2 − 2Pk + rk, (A.15)

Pk = −
√

−P 2kz,

rk ≈ r0(k0 + kz) = r0
√

−P 2(1 − x)

=
1
2
(p2

1 − p2
2)(1 − x). (A.16)

(In the above equalities (A.11) and (A.9) were exploited.)
As a result we get (δ functions being eliminated by inte-
gration over k2

⊥ and k0):

ImT =
π

4q0
√−P 2
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×
−P 2(1−x)∫

−2ν

dυ
1

p2
1 + υ − (p2

1 − p2
2)(1 − x)/2

× 1
p2
2 + υ + (p2

1 − p2
2)(1 − x)/2

. (A.17)

Changing variables

υ = −P 2(1 − x) − ux, (A.18)

gives the final answer

ImT =
π

4νx

∞∫
0

1
u− p2

1

1
u− p2

2
du. (A.19)

(The upper limit of integration was put to infinity, which
is legitimate in the lowest twist approximation.)
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